

A Serverless Data Lake with
Amazon Web Services (AWS)
6/23/2020

Ralf Brockhaus
Smilefish
4590 MacArthur Blvd #500

Newport Beach, CA 92660

Overview
The following case study describes a data lake solution that we developed and continued to
maintain for one of our digital marketing clients.

This is our 3rd iteration implementing data lakes in AWS. This time, we are taking the
challenge to commit to a serverless approach. The lake’s cost at rest should be minimal.

Every chain is only as strong as its weakest link. So we also take the opportunity to formally
review our solution based on Amazon’s well-architected framework and optimize it to evenly
meet Amazon’s 5 pillars of excellence for business operations, security, reliability,
performance, and cost.

Goals
1. Host a full US consumer header with 300 million datasets of 400 data points with

monthly updates.

2. Ability to manage 1 billion business leads and associated data records in structured,
semi-structured, and unstructured formats.

3. Architect a solution optimized for business agility, monetization, compliance, and
user experience.

4. Validate the implementation based on Amazon’s 5 pillars of excellence: business
operations, security, reliability, performance, and cost.

5. Completely separate data storage from data processing and shift towards a
low-maintenance serverless implementation where possible.

6. Prepare the client for advanced data analytics and applications of true machine
learning.

Technology
We selected AWS S3 for storage, secured by IAM, monitored via Cloud Watch. The
automated ingestion process utilizes the AWS Glue Crawler and Data Catalog. We
maintain the metadata in DynamoDB. Automated ETL is executed via Lambda managed
under the AWS API Gateway. It uses Athena CTAS and ETL queries. Athena is now also
the main analytical query engine. Our admin dashboard is implemented using ReactJS and
Highcharts for data visualization. The dashboard is connected to our API Gateway.
Our operational Consumer Header services are still partially implemented in NodeJS and
Python hosted on EC2 with RDS / Postgres for quick relational transactions.

1

Table of contents:
Overview 1

Goals 1

Technology 1

Data Lake 3
Characteristics 3
Reference Architecture 3

(1) Central Storage 4
(2) Data Ingestion 4
(3) Processing and Analytics 4
(4) Protect and Secure 5
(5) Data Catalog and Search 5
(6) Access and User Interface 5

Avoid the Data Swamp! 6

Case Study Part1 7
Data Ingestion 7
Processing 8
Optimization 9
Benchmark and Summary 10

References: 10

2

Data Lake
A data lake is a centralized repository that allows a business to store all structured,
semi-structured, and unstructured data at an unlimited scale. This data can be stored as-is,
be processed for different types of analytics and machine learning. The result allows for
better business decisions and higher monetization.

We are covering the very helpful (yet more formal and dry) part of the well-architected
framework further down in the document and focus on the task at hand first:

Characteristics
● Our data lake needs to provide the ability to store all data, regardless of source,

structure, and amount in its original/pristine format to create a Single Source of Truth
for all further processing and analytics.

● The implementation needs to decouple storage from computation to enable the
selection of best in class choices for processing and analytics.

● Data providers should only be pointed to a drop-off location and have no
restrictions on format, quantity, delivery speed, or time of day.

● The data lake should support quick ingestion and automated processing at
appropriate speed with minimal maintenance cost.

● The data lake needs to be designed for low-cost storage with cost tiers that also
allow keeping historic data that is less frequently accessed as its business value
declines.

● The lake needs to provide comprehensive protection, security, and tracking as data
flows through the tiers within the lake.

● The case study for consumer data needs to meet privacy compliance requirements
(PII / Non-PII). We also work with medical applications. The selected technology and
access policies need to meet HIPAA compliance and other mandates for managing
medical data.

Reference Architecture
By selecting AWS S3 as our core storage solution, we can build a data lake with virtually
unlimited storage at a low cost. Building the architecture around S3 also enables us to
completely decouple storage from computation, which allows us to selectively combine
other AWS services to meet all business requirements. We found this helpful to future
proof our solutions in which we can conveniently experiment and replace individual
components as requirements change or skills and technology evolve.

3

Diagram 1: Reference Architecture for AWS Well-Architected Framework

(1) Central Storage
We configured dedicated S3 buckets in logical data tier layers to store all pristine original
data as well as all datasets created by our ETL and analytics environments:

Tier 1: buckets for pristine raw data from ingestion services

Tier 2: data resulting from ETL jobs. We store this data mostly in columnar Parquet
format to be optimized for analytics, cost, and speed (see benchmark further down).

Tier 3: business-data generated from tier 2 data catered to convenient access in
specific business scenarios. For faster operational needs, this data can also be
loaded into RDS, Redshift, or DynamoDB databases. Equally, data from these
databases can be synchronized or offloaded into the s3 lake for consistent analytics.

(2) Data Ingestion
Our Tier 1 consumer data is mostly uploaded via FTP or data streaming to dedicated
buckets. Tier 1 also includes data from Salesforce, lead-generating websites, external
advertising, and analytics (Google) a well as crawlers.

(3) Processing and Analytics

4

Every new Tier 1 data file triggers an event to catalog the metadata in RDS or DynamoDB
and automatically starts the ETL for Tier 2 with AWS Glue, Lambda, and (in the past)
dedicated EC2 routines. The data is then ready for analytics in Athena and results can be
visualized in AWS Quicksight, Tableau, Microsoft Power BI or served by business
applications that rely on RDS, Redshift, or DynamoDB (automated process).

(4) Protect and Secure
To fully cover authentication, authorization, encryption, compliance, and auditability, we
need to review all data at rest and in transit. We then need to consistently enforce these
concepts vertically throughout all storage and processing services.

Implementing our data lake with focus one technology provider allowed us to store keys in
KSM, configure roles and policies in IAM, and audit all processing via Cloud Trail.

We strongly recommend implementing configuration in the form of scripts and treating
these scripts as software and therefore fully tested and under version control. (CI-CD)

Next, we defined specific policies for “3rd party” integrations with Salesforce, Google, and
Facebook.

(5) Data Catalog and Search
An effective data catalog service is essential in harvesting business value from the data
lake. It ensures that the necessary metadata about every item in the lake is captured,
governed, maintained, indexed, and searchable. We automate these services via AWS Glue
and Lambda functions that are triggered when files arrive, get modified or deleted. (see
Avoid the Data Swamp).

(6) Access and User Interface
Business value is driven by our ability to monetize the data in the lake. We implemented
secure serverless APIs with Lambda functions under the Amazon API Gateway.

● Ingestion of datasets and their metadata. For our Consumer Header application, this
also includes synchronization with Salesforce and payment gateways.

● API endpoint to configure ETL to increase data value from Tier 1 to Tier2.
● API endpoints to load data into DynamoDB, RDS, and Redshift business applications

and automated back-synchronization into Tier2 for analytics.
● This access also allows for visualization in analytics dashboards which we

implemented with ReactJS and Highcharts talking to DynamoDB, RDS, or directly to
Athena.

5

Avoid Data Swamp!
With power comes responsibility. Many organizations fall into ‘data-greed’ and face
challenges given the opportunity to collect unlimited amounts of raw data and store it at
low cost without oversight and governance. Avoiding a ‘data-swamp’ requires mechanisms
that guarantee semantic consistency, governance, and access control.

We used various tools to establish governance and manage our data lake’s metadata in
DynamoDB (and RDS if needed). For this case study, we continue our journey into
serverless architecture and see high value in AWS Glue Crawlers and Glue Data Catalog
which helped our migration to Athena as it makes services interchangeable.

Diagram 2: AWS Glue Data Catalog

We desire flexibility in selecting tools across the AWS ecosystem. Glue provides flexibility
due to support not only for our data lake in S3, but also the Redshift data warehouse and
our operational RDS Postgres databases. At the same time, we can utilize the resulting
data catalogs in Athena, Redshift Spectrum, and AWS Glue ETL.

For this case study, we utilize Glue to crawl the consumer header, create data tables which
we use in Athena, and we also use it to quickly attach visualization in Quicksight. For now,
we continue to maintain all our metadata in DynamoDB and RDS, but we are considering a
deeper integration with Glue in the future.

6

Case Study Part 1
In the following bench mar, we are setting up a simplified data lake and use the example of
a consumer header to illustrate the configuration with S3, IAM, Glue and execute a
benchmark with Athena CTAS, ELT, and analytical queries to show drastic performance
gains and cost reduction via serverless queries executed directly on low-cost s3 storage.

Data Ingestion
First, we are setting up the storage for the pristine consumer header data, monthly
updates, and all data formats the result from ETL:

● We configure separate S3 buckets for data upload and processing. This allows us to
create user accounts and policies in IAM to specify locations for our partners to
upload their data restricted to specifically secured buckets. All the partner needs to
know are the locations and credentials.

○ The monthly consumer header has 400+ attributes and roughly 300 million
rows. The partner uploads the data in multiple compressed files of roughly
7.5 GB each.

○ Note: Glue and Athena can work directly on uncompressed files as long as
they are consistent and stored in the assigned S3 “folder”.

● The upload triggers scripts via Cloud Watch Rules to copy and process the data to
“internal” S3 buckets for which we defined a separate set of policies in IAM. Some
of this work we initially tested with the AWS UI console, but we then automate
staging and production via shell scripts and use AWS command-line tools.

● To copy the data we use AWS APIs and the AWS command-line tool:
○ AWS s3 cp s3://consumer/intake-$data s3://consumer/$date-pristine
○ The same concept works for almost all AWS services and APIs.

We automatically catalog metadata for every file:

● The file detection triggers the copy to “internal” buckets as well as Lambda
functions to create metadata we manage in DynamoDB.

● Last but not least we utilize AWS Glue to crawl the file(s), verify the consumer
header’s column set, and generate data table definitions that line up with our
metadata.

○ Glue is very helpful in creating tables, but please verify the types and names.
We stumbled i.e. over little gotchas with long names in capital letters.

○ You might want to agree with a vendor on a header sample and use it for
verification, and you can also load the sample’s header into the Glue
command via Glue classifiers.

7

● Via the same Lambda functions, we can also integrate virus checkers, notifications
via AWS SES (simple email service) or text messages.

Processing
In other projects, we use Redshift and Redshift Spectrum and execute bigger ETL jobs on
EC2. However, for this Consumer Header Project, we fully committed to the serverless
approach. Using Lambda functions and moving most of the ETL pipeline into Athena
allowed us to drastically reduce cost and maintenance.

Amazon charges $5 per terabyte of data scanned by Athena and there are a lot of tricks to
reduce the amount of data to be scanned.

Athea seamlessly utilizes the table definition we created via Glue and we can directly read
information from the compressed (.gz) files in S3:

SELECT count(HouseholdID) FROM

"sf-digital-transformation"."consumer_raw";

● Run time: 5 minutes 9 seconds, Data scanned: 30.85 GB
● Results: 309.062.253 rows
● A query directly executed on zipped CSV is very slow and relatively expensive.
● We could still optimize the data by breaking it into much smaller partitions. Instead,

move directly to Apache Parquet files.

Apache Parquet is a tabular data format optimized for analytical access. The processing
cost is drastically lower and speed is faster as queries only traverse the columns of interest.
The binary format and compression further reduce the storage cost at rest.

We create parquet via Athea CTAP queries and can execute ETL at the same time. Here, we
just focus on ingesting the data:

CREATE TABLE

"sf-digital-transformation"."consumer_2020_03_all_cols_parquet"

WITH (format='PARQUET',

external_location='s3://consumer/2020-03/consumer-all-cols-parquet',parqu

et_compression = 'SNAPPY') AS

SELECT HouseholdID,PersonID,

 ... (here we deleted 400 columns to keep this document short) ...

WirelessPhone,ZipCode FROM "sf-digital-transformation"."consumer_raw"

○ Run time: 80 minutes 46 seconds, Data scanned: 30.85 GB, Cost $ 0.15
○ Results: 309.062.253 rows
○ The data files are compressed with SNAPPY
○ This query reads and writes a lot of data. For long queries, you might need to expand

Athena’s default timeout (for your region!) from 30 to 120 minutes.

8

Querying the newly created parquet allows you to avoid many ‘coffee breaks’:

SELECT count(addressid) FROM

"sf-digital-transformation"."consumer_2020_03_all_parquet";

○ Run time: 4.67 seconds, Data scanned: 771.12 MB, Cost $ 0.008 (vs 5min/30GB/$ 0.15)
○ Results: 309.062.253 rows

Optimization
We can further optimize the parquet queries by partitioning and bucketing data towards
common query parameters like state, zip-code, or household income. Parquet in
combination with Athena’s CTAS queries allows us to execute complex ETL queries and the
low-cost S3 storage allows us to prepare and store multiple of these data sets to have them
ready for fast and cost-effective access.

Let’s run a query for all consumer data in California:

SELECT count(addressid) FROM

"sf-digital-transformation"."consumer_2020_03_all_parquet" where

state='CA';

○ Run time: 12.55 seconds, Data scanned: 501.53 MB
○ Results: 7.178.997 rows

For comparison, we create a consumer header dataset bucketed by state:

CREATE TABLE

"sf-digital-transformation"."consumer_2020_03_parquet_state_buckets" WITH

(format='PARQUET',

external_location='s3://consumer/2020-03/consumer-parquet-state-buckets',

parquet_compression = 'SNAPPY', bucketed_by = ARRAY['state'],

bucket_count = 60) AS

SELECT HouseholdID,PersonID,

 ... (here we deleted 400 columns to keep this document short) ...

WirelessPhone,ZipCode FROM

"sf-digital-transformation"."consumer_2020_03_all_cols_parquet"

○ Run time: 103 minutes 50 seconds, Data scanned: 30.33 GB
○ Results: 309.062.253 rows
○ It took even longer than creating the unbucketed data as it had to be placed in 60

dedicated files. Again, this is likely a small price to pay.

Now we can run all queries that require state-specific data optimized for cost:

9

SELECT count(addressid) FROM

"sf-digital-transformation"."consumer_2020_03_parquet_state_buckets"

where state='CA';

○ Run time: 6.18 seconds, data scanned: 49.5 MB
○ Compared to 12.55 seconds and 501.53 MB to query the un-bucketed data set.
○ Results: 7.178.997 rows

Benchmark and Summary
The above comparison based on one column is not entirely fair. For a more realistic
benchmark, we are executing queries with 8 columns:

SELECT firstname, lastname, housenumber,

predirection,streetname,streetsuffix,state,zipcode from

"sf-digital-transformation"."xxx" where state='CA';

Approach Results Time Data scanned Cost

Query gz csv files
directly

7.178.997 337.36
seconds,

30.85 GB $ 0.15063

Query parquet 7.178.997 28.32
seconds,

1.75 GB $ 0.00854

Query parquet with
state buckets

7.178.997 25.28
seconds

0.18 GB $ 0.00088

Considering the query cost, maintenance, and scalability, we will favor the serverless model
for new development and also consider migrating projects.

We started to review projects to identify peaks in our processing. We selectively moved any
functions causing those peaks into Lambda, instead of adding additional EC2 servers and
RDS nodes. A documented cost analysis might follow in a separate case study.

References:
● https://d1.awsstatic.com/whitepapers/architecture/wellarchitected-Analytics-Lens.p

df
● https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framewo

rk.pdf

10

https://d1.awsstatic.com/whitepapers/architecture/wellarchitected-Analytics-Lens.pdf
https://d1.awsstatic.com/whitepapers/architecture/wellarchitected-Analytics-Lens.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf

